Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(3): 1325-1340, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38096103

ABSTRACT

Nucleotide analogues (NA) are currently employed for treatment of several viral diseases, including COVID-19. NA prodrugs are intracellularly activated to the 5'-triphosphate form. They are incorporated into the viral RNA by the viral polymerase (SARS-CoV-2 nsp12), terminating or corrupting RNA synthesis. For Coronaviruses, natural resistance to NAs is provided by a viral 3'-to-5' exonuclease heterodimer nsp14/nsp10, which can remove terminal analogues. Here, we show that the replacement of the α-phosphate of Bemnifosbuvir 5'-triphosphate form (AT-9010) by an α-thiophosphate renders it resistant to excision. The resulting α-thiotriphosphate, AT-9052, exists as two epimers (RP/SP). Through co-crystallization and activity assays, we show that the Sp isomer is preferentially used as a substrate by nucleotide diphosphate kinase (NDPK), and by SARS-CoV-2 nsp12, where its incorporation causes immediate chain-termination. The same -Sp isomer, once incorporated by nsp12, is also totally resistant to the excision by nsp10/nsp14 complex. However, unlike AT-9010, AT-9052-RP/SP no longer inhibits the N-terminal nucleotidylation domain of nsp12. We conclude that AT-9052-Sp exhibits a unique mechanism of action against SARS-CoV-2. Moreover, the thio modification provides a general approach to rescue existing NAs whose activity is hampered by coronavirus proofreading capacity.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Polyphosphates , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Exonucleases , Nucleotides/metabolism , Nucleotidyltransferases , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism
2.
Antiviral Res ; 212: 105574, 2023 04.
Article in English | MEDLINE | ID: mdl-36905944

ABSTRACT

AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 µM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/drug therapy , Dengue Virus/physiology , Guanosine/pharmacology , Guanosine/metabolism , Guanosine Triphosphate/metabolism , RNA, Viral/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication
3.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 03.
Article in English | MEDLINE | ID: mdl-36697369

ABSTRACT

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , Positive-Strand RNA Viruses , Antiviral Agents/therapeutic use , Pandemics , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/drug therapy
4.
Antiviral Res ; 210: 105501, 2023 02.
Article in English | MEDLINE | ID: mdl-36567022

ABSTRACT

Nucleoside/tide analogues (NAs) have long been used in the fight against viral diseases, and now present a promising option for the treatment of COVID-19. Once activated to the 5'-triphosphate state, NAs act by targeting the viral RNA-dependent RNA-polymerase for incorporation into the viral RNA genome. Incorporated analogues can either 'kill' (terminate) synthesis, or 'corrupt' (genetically or chemically) the RNA. Against coronaviruses, the use of NAs has been further complicated by the presence of a virally encoded exonuclease domain (nsp14) with proofreading and repair capacities. Here, we describe the mechanism of action of four promising anti-COVID-19 NAs; remdesivir, molnupiravir, favipiravir and bemnifosbuvir. Their distinct mechanisms of action best exemplify the concept of 'killers' and 'corruptors'. We review available data regarding their ability to be incorporated and excised, and discuss the specific structural features that dictate their overall potency, toxicity, and mutagenic potential. This should guide the synthesis of novel analogues, lend insight into the potential for resistance mutations, and provide a rational basis for upcoming combinations therapies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleotides/pharmacology , Nucleotides/chemistry , Antiviral Agents/therapeutic use , RNA, Viral/genetics
5.
Nucleic Acids Res ; 50(19): 11186-11198, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36265859

ABSTRACT

The order Nidovirales is a diverse group of (+)RNA viruses, with a common genome organization and conserved set of replicative and editing enzymes. In particular, RNA methyltransferases play a central role in mRNA stability and immune escape. However, their presence and distribution in different Nidovirales families is not homogeneous. In Coronaviridae, the best characterized family, two distinct methytransferases perform methylation of the N7-guanine and 2'-OH of the RNA-cap to generate a cap-1 structure (m7GpppNm). The genes of both of these enzymes are located in the ORF1b genomic region. While 2'-O-MTases can be identified for most other families based on conservation of both sequence motifs and genetic loci, identification of the N7-guanine methyltransferase has proved more challenging. Recently, we identified a putative N7-MTase domain in the ORF1a region (N7-MT-1a) of certain members of the large genome Tobaniviridae family. Here, we demonstrate that this domain indeed harbors N7-specific methyltransferase activity. We present its structure as the first N7-specific Rossmann-fold (RF) MTase identified for (+)RNA viruses, making it remarkably different from that of the known Coronaviridae ORF1b N7-MTase gene. We discuss the evolutionary implications of such an appearance in this unexpected location in the genome, which introduces a split-off in the classification of Tobaniviridae.


Subject(s)
Nidovirales , RNA Caps , Humans , RNA Caps/genetics , Methyltransferases/genetics , Methyltransferases/chemistry , Guanine , Genome, Viral , RNA, Viral/genetics
6.
Nat Commun ; 13(1): 621, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110538

ABSTRACT

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Guanosine Monophosphate/analogs & derivatives , Phosphoramides/chemistry , Phosphoramides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , COVID-19/virology , Cryoelectron Microscopy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guanosine Monophosphate/chemistry , Guanosine Monophosphate/pharmacology , Humans , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Viral Proteins/genetics
7.
Elife ; 102021 10 07.
Article in English | MEDLINE | ID: mdl-34617885

ABSTRACT

The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity. Here, we characterize the impact of remdesivir (RDV, the only FDA-approved anti-coronavirus drug) and other nucleotide analogs (NAs) on RNA synthesis by the coronavirus polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. We reveal that the location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We show that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into backtrack as far as 30 nt, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this NA well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.


To multiply and spread from cell to cell, the virus responsible for COVID-19 (also known as SARS-CoV-2) must first replicate its genetic information. This process involves a 'polymerase' protein complex making a faithful copy by assembling a precise sequence of building blocks, or nucleotides. The only drug approved against SARS-CoV-2 by the US Food and Drug Administration (FDA), remdesivir, consists of a nucleotide analog, a molecule whose structure is similar to the actual building blocks needed for replication. If the polymerase recognizes and integrates these analogs into the growing genetic sequence, the replication mechanism is disrupted, and the virus cannot multiply. Most approaches to study this process seem to indicate that remdesivir works by stopping the polymerase and terminating replication altogether. Yet, exactly how remdesivir and other analogs impair the synthesis of new copies of the virus remains uncertain. To explore this question, Seifert, Bera et al. employed an approach called magnetic tweezers which uses a magnetic field to manipulate micro-particles with great precision. Unlike other methods, this technique allows analogs to be integrated under conditions similar to those found in cells, and to be examined at the level of a single molecule. The results show that contrary to previous assumptions, remdesivir does not terminate replication; instead, it causes the polymerase to pause and backtrack (which may appear as termination in other techniques). The same approach was then applied to other nucleotide analogs, some of which were also found to target the SARS-CoV-2 polymerase. However, these analogs are incorporated differently to remdesivir and with less efficiency. They also obstruct the polymerase in distinct ways. Taken together, the results by Seifert, Bera et al. suggest that magnetic tweezers can be a powerful approach to reveal how analogs interfere with replication. This information could be used to improve currently available analogs as well as develop new antiviral drugs that are more effective against SARS-CoV-2. This knowledge will be key at a time when treatments against COVID-19 are still lacking, and may be needed to protect against new variants and future outbreaks.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Nucleotides/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Cell Line , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Humans , Models, Theoretical , Nucleotides/metabolism , RNA, Viral , SARS-CoV-2/enzymology , Stochastic Processes , Virus Replication/drug effects
8.
Antimicrob Agents Chemother ; 65(11): e0098821, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34424050

ABSTRACT

Every year, millions of people worldwide are infected with dengue virus (DENV), with a significant number developing severe life-threatening disease. There are currently no broadly indicated vaccines or therapeutics available for treatment of DENV infection. Here, we show that AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, was a potent inhibitor of DENV serotypes 2 and 3 in vitro, requiring concentrations of 0.48 and 0.77 µM, respectively, to inhibit viral replication by 50% (EC50) in Huh-7 cells. AT-281 was also a potent inhibitor of all other flaviviruses tested, with EC50 values ranging from 0.19 to 1.41 µM. Little to no cytotoxicity was observed for AT-281 at concentrations up to 170 µM. After oral administration of AT-752, substantial levels of the active triphosphate metabolite AT-9010 were formed in vivo in peripheral blood mononuclear cells of mice, rats, and monkeys. Furthermore, AT-9010 competed with GTP in RNA template-primer elongation assays with DENV2 RNA polymerase, which is essential for viral replication, with incorporation of AT-9010 resulting in termination of RNA synthesis. In AG129 mice infected with DENV D2Y98P, treatment with AT-752 significantly reduced viremia and morbidity and increased survival. The demonstrated in vitro and in vivo activity of AT-752 suggests that it is a promising compound for the treatment of dengue virus infection and is currently under evaluation in clinical studies.


Subject(s)
Dengue Virus , Dengue , Flavivirus , Prodrugs , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dengue/drug therapy , Guanosine/pharmacology , Guanosine/therapeutic use , Leukocytes, Mononuclear , Mice , Nucleotides/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use , Rats , Virus Replication
9.
J Virol ; 95(15): e0077721, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34011549

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a reemerging arthropod-borne virus causing encephalitis in humans and domesticated animals. VEEV possesses a positive single-stranded RNA genome capped at its 5' end. The capping process is performed by the nonstructural protein nsP1, which bears methyl and guanylyltransferase activities. The capping reaction starts with the methylation of GTP. The generated m7GTP is complexed to the enzyme to form an m7GMP-nsP1 covalent intermediate. The m7GMP is then transferred onto the 5'-diphosphate end of the viral RNA. Here, we explore the specificities of the acceptor substrate in terms of length, RNA secondary structure, and/or sequence. Any diphosphate nucleosides but GDP can serve as acceptors of the m7GMP to yield m7GpppA, m7GpppC, or m7GpppU. We show that capping is more efficient on small RNA molecules, whereas RNAs longer than 130 nucleotides are barely capped by the enzyme. The structure and sequence of the short, conserved stem-loop, downstream to the cap, is an essential regulatory element for the capping process. IMPORTANCE The emergence, reemergence, and expansion of alphaviruses (genus of the family Togaviridae) are a serious public health and epizootic threat. Venezuelan equine encephalitis virus (VEEV) causes encephalitis in human and domesticated animals, with a mortality rate reaching 80% in horses. To date, no efficient vaccine or safe antivirals are available for human use. VEEV nonstructural protein 1 (nsP1) is the viral capping enzyme characteristic of the Alphavirus genus. nsP1 catalyzes methyltransferase and guanylyltransferase reactions, representing a good therapeutic target. In the present report, we provide insights into the molecular features and specificities of the cap acceptor substrate for the guanylylation reaction.


Subject(s)
Encephalitis Virus, Venezuelan Equine/genetics , RNA Caps/genetics , RNA, Viral/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics , Animals , Encephalomyelitis, Venezuelan Equine/pathology , Encephalomyelitis, Venezuelan Equine/virology , Horses , Humans , Methyltransferases/metabolism , Nucleic Acid Conformation , Nucleotidyltransferases/metabolism , Viral Nonstructural Proteins/genetics
10.
bioRxiv ; 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33851161

ABSTRACT

The nucleotide analog Remdesivir (RDV) is the only FDA-approved antiviral therapy to treat infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The physical basis for efficient utilization of RDV by SARS-CoV-2 polymerase is unknown. Here, we characterize the impact of RDV and other nucleotide analogs on RNA synthesis by the polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. The location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We reveal that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into deep backtrack, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this nucleotide analog well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases. TEASER: We revise Remdesivir's mechanism of action and reveal SARS-CoV-2 ability to evade interferon-induced antiviral ddhCTP.

11.
J Virol Methods ; 288: 114013, 2021 02.
Article in English | MEDLINE | ID: mdl-33166547

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emergence in 2003 introduced the first serious human coronavirus pathogen to an unprepared world. To control emerging viruses, existing successful anti(retro)viral therapies can inspire antiviral strategies, as conserved viral enzymes (eg., viral proteases and RNA-dependent RNA polymerases) represent targets of choice. Since 2003, much effort has been expended in the characterization of the SARS-CoV replication/transcription machinery. Until recently, a pure and highly active preparation of SARS-CoV recombinant RNA synthesis machinery was not available, impeding target-based high throughput screening of drug candidates against this viral family. The current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic revealed a new pathogen whose RNA synthesis machinery is highly (>96 % aa identity) homologous to SARS-CoV. This phylogenetic relatedness highlights the potential use of conserved replication enzymes to discover inhibitors against this significant pathogen, which in turn, contributes to scientific preparedness against emerging viruses. Here, we report the use of a purified and highly active SARS-CoV replication/transcription complex (RTC) to set-up a high-throughput screening of Coronavirus RNA synthesis inhibitors. The screening of a small (1520 compounds) chemical library of FDA-approved drugs demonstrates the robustness of our assay and will allow to speed-up drug discovery against the SARS-CoV-2.


Subject(s)
Fluorescent Dyes , High-Throughput Screening Assays , RNA, Viral , RNA-Dependent RNA Polymerase/metabolism , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Antiviral Agents/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Activation , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/standards , Humans , Inhibitory Concentration 50 , RNA, Messenger/genetics , Templates, Genetic
12.
Nat Commun ; 11(1): 4682, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943628

ABSTRACT

The ongoing Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has emphasized the urgent need for antiviral therapeutics. The viral RNA-dependent-RNA-polymerase (RdRp) is a promising target with polymerase inhibitors successfully used for the treatment of several viral diseases. We demonstrate here that Favipiravir predominantly exerts an antiviral effect through lethal mutagenesis. The SARS-CoV RdRp complex is at least 10-fold more active than any other viral RdRp known. It possesses both unusually high nucleotide incorporation rates and high-error rates allowing facile insertion of Favipiravir into viral RNA, provoking C-to-U and G-to-A transitions in the already low cytosine content SARS-CoV-2 genome. The coronavirus RdRp complex represents an Achilles heel for SARS-CoV, supporting nucleoside analogues as promising candidates for the treatment of COVID-19.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/genetics , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Pyrazines/pharmacology , Amides/pharmacokinetics , Animals , Antiviral Agents/pharmacokinetics , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Models, Molecular , Mutagenesis/drug effects , Pandemics , Pneumonia, Viral/virology , Pyrazines/pharmacokinetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Sequence Analysis , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , COVID-19 Drug Treatment
13.
Rev Med Virol ; 30(6): 1-10, 2020 11.
Article in English | MEDLINE | ID: mdl-32779326

ABSTRACT

The health emergency caused by the recent Covid-19 pandemic highlights the need to identify effective treatments against the virus causing this disease (SARS-CoV-2). The first clinical trials have been testing repurposed drugs that show promising anti-SARS-CoV-2 effects in cultured cells. Although more than 2400 clinical trials are already under way, the actual number of tested compounds is still limited to approximately 20, alone or in combination. In addition, knowledge on their mode of action (MoA) is currently insufficient. Their first results reveal some inconsistencies and contradictory results and suggest that cohort size and quality of the control arm are two key issues for obtaining rigorous and conclusive results. Moreover, the observed discrepancies might also result from differences in the clinical inclusion criteria, including the possibility of early treatment that may be essential for therapy efficacy in patients with Covid-19. Importantly, efforts should also be made to test new compounds with a documented MoA against SARS-CoV-2 in clinical trials. Successful treatment will probably be based on multitherapies with antiviral compounds that target different steps of the virus life cycle. Moreover, a multidisciplinary approach that combines artificial intelligence, compound docking, and robust in vitro and in vivo assays will accelerate the development of new antiviral molecules. Finally, large retrospective studies on hospitalized patients are needed to evaluate the different treatments with robust statistical tools and to identify the best treatment for each Covid-19 stage. This review describes different candidate antiviral strategies for Covid-19, by focusing on their mechanism of action.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Combined Modality Therapy , Disease Management , Disease Susceptibility , Drug Development , Drug Repositioning , Host-Pathogen Interactions , Humans , Treatment Outcome
14.
Antiviral Res ; 178: 104793, 2020 06.
Article in English | MEDLINE | ID: mdl-32283108

ABSTRACT

The rapid global emergence of SARS-CoV-2 has been the cause of significant health concern, highlighting the immediate need for antivirals. Viral RNA-dependent RNA polymerases (RdRp) play essential roles in viral RNA synthesis, and thus remains the target of choice for the prophylactic or curative treatment of several viral diseases, due to high sequence and structural conservation. To date, the most promising broad-spectrum class of viral RdRp inhibitors are nucleoside analogues (NAs), with over 25 approved for the treatment of several medically important viral diseases. However, Coronaviruses stand out as a particularly challenging case for NA drug design due to the presence of an exonuclease (ExoN) domain capable of excising incorporated NAs and thus providing resistance to many of these available antivirals. Here we use the available structures of the SARS-CoV RdRp and ExoN proteins, as well as Lassa virus N exonuclease to derive models of catalytically competent SARS-CoV-2 enzymes. We then map a promising NA candidate, GS-441524 (the active metabolite of Remdesivir) to the nucleoside active site of both proteins, identifying the residues important for nucleotide recognition, discrimination, and excision. Interestingly, GS-441524 addresses both enzyme active sites in a manner consistent with significant incorporation, delayed chain termination, and altered excision due to the ribose 1'-CN group, which may account for the increased antiviral effect compared to other available analogues. Additionally, we propose structural and function implications of two previously identified RdRp resistance mutations in relation to resistance against Remdesivir. This study highlights the importance of considering the balance between incorporation and excision properties of NAs between the RdRp and ExoN.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antimetabolites/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Exoribonucleases/chemistry , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Antimetabolites/chemistry , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Catalytic Domain , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Drug Resistance, Viral , Exoribonucleases/genetics , Exoribonucleases/metabolism , Humans , Models, Molecular , Mutation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
15.
NAR Genom Bioinform ; 2(1): lqz022, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289120

ABSTRACT

The order Nidovirales is a diverse group of (+)RNA viruses, classified together based on their common genome organisation and conserved replicative enzymes, despite drastic differences in size and complexity. One such difference pertains to the mechanisms and enzymes responsible for generation of the proposed viral 5' RNA cap. Within the Coronaviridae family, two separate methytransferases (MTase), nsp14 and nsp16, perform the RNA-cap N7-guanine and 2'-OH methylation respectively for generation of the proposed m7GpppNm type I cap structure. For the majority of other families within the Nidovirales order, the presence, structure and key enzymes involved in 5' capping are far less clear. These viruses either lack completely an RNA MTase signature sequence, or lack an N7-guanine methyltransferase signature sequence, obscuring our understanding about how RNA-caps are N7-methylated for these families. Here, we report the discovery of a putative Rossmann fold RNA methyltransferase in 10 Tobaniviridae members in Orf1a, an unusual genome locus for this gene. Multiple sequence alignments and structural analyses lead us to propose this novel gene as a typical RNA-cap N7-guanine MTase with substrate specificity and active-site organization similar to the canonical eukaryotic RNA-cap N7-guanine MTase.

16.
Vaccines (Basel) ; 7(4)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31756967

ABSTRACT

Dengue virus is the most important arbovirus impacting global human health, with an estimated 390 million infections annually, and over half the world's population at risk of infection. While significant efforts have been made to develop effective vaccines to mitigate this threat, the task has proven extremely challenging, with new approaches continually being sought. The majority of protective, neutralizing antibodies induced during infection are targeted by the envelope (E) protein, making it an ideal candidate for a subunit vaccine approach. Using truncated, recombinant, secreted E proteins (sE) of all 4 dengue virus serotypes, we have assessed their immunogenicity and protective efficacy in mice, with or without Quil-A as an adjuvant, and delivered via micropatch array (MPA) to the skin in comparison with more traditional routes of immunization. The micropatch contains an ultra-high density array (21,000/cm2) of 110 µm microprojections. Mice received 3 doses of 1 µg (nanopatch, intradermal, subcutaneous, or intra muscular injection) or 10 µg (intradermal, subcutaneous, or intra muscular injection) of tetravalent sE spaced 4 weeks apart. When adjuvanted with Quil-A, tetravalent sE vaccination delivered via MPA resulted in earlier induction of virus-neutralizing IgG antibodies for all four serotypes when compared with all of the other vaccination routes. Using the infectious dengue virus AG129 mouse infectious dengue model, these neutralizing antibodies protected all mice from lethal dengue virus type 2 D220 challenge, with protected animals showing no signs of disease or circulating virus. If these results can be translated to humans, MPA-delivered sE represents a promising approach to dengue virus vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL
...